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Abstract

The applicationof the minimM polynomial extrapolation(MPE) and the reduced rank ex-

trapolation(RRE) to a vector sequence obtained by the lineariterativetechnique zj+ I -

Az# + b, j - 1,2,...,isconsidered. Both methods produce a two-dimensionM array of ap-

proxirnationss,,k to the solutionofthe system (!- A)z -- b. Here a,,k isobtained from the

vectorsz), n <__j <_n + k + I.Itwas observed inan earlierpublicationby the firstauthor that

the sequence s,_.k,k - I,2,...,forn > 0,but fixed,possessesbetterconvergence propertiesthan

the sequence s0.k,]:- I,2,....A detailedtheoreticalexplanationfor thisphenomenon ispro-

vided inthe present work. This explanationisheavilybased on approximations by incomplete

polynomials.Itisdemonstrated by numericalexamples when the matrix A issparsethatcycling

with s,,.kforn > 0,but fixed,produces betterconvergenceratesand costslesscomputationally

than cyclingwith s0,_. Itisalsoillustratednumericallywith a convection-dh_'usionproblem

that the former may produce excellentresultswhere the lattermay f_ilcompletely.As has been

shown in an earlierpublication,the resultsproduced by s0,kare identicalto the corresponding

resultsobtained by applying the Arnoldimethod or GMRES to the system (]"- A)z --b.
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1 Introduction

Let _ be the solution to the nonsinguJar linear N x N system Bz = .f, which we choose to write

equivalently in the possible preconditioned form

= Az+b. (1.1)

With zo pickedarbitrarily,we iterate(I.I),and generatethe vectorszl,z2,...,i.e.,

zi+ 1 = Azj + b, j=0,1, .... (1.2)

If r - p(A), the spectral radius of A, then the error zn -s tends to zero practically as r '_ for n ---*oo

provided r < 1.

In most cases of interest that occur in practice r may be very close to 1, and this causes

the sequence {zj}___ 0 to converge very slowly. One efficient way of overcoming this problem is

to use vector extrapolation methods in conjunction with the iterative scheme in (1.2). Of the

various extrapoiation methods two have proved to be especially effective, and these are the minimal

polynomial extrapolation (MPE) of Cabay and Jackson [CaJa] and the reduced ran]." extrapolation

(RRE) of Eddy [Ed] and *Iegina [M]. A method almost identical to RRE was _ven earlier by Kan_iel

and Stein [KStei].

• OOBoth MPE and RKE, when applied to the sequence {zj)_=0, produce a two-dimensional array

of approximations to s, whose entries we denote by _,,.t. For given integers n >_ 0 and k >_ 1, s,_,k

for both methods is determined from the vectors z,_, z,,+l, ...,z,_+k+l, and is of the form

k

.o,,= (1.3)
._=0

_(,_,k)
such that the scalars "Tj depend on z_, n < i < n + k + 1, nonlinearly, and satisfy

k

- 1. (1.4)
._=0

Thus the indices n and k of $,.k indicate that n iterations have been performed with the iterative

scheme in (1.2) and that MPE or RRE is being applied to z,,, z,_+l,..., z,,+,+1, the initial vectors

zo, zl,..., z.-1 being discarded.

A discussion of MPE and RRE in the setting of both linear and nonlinear iterative techniques

can be found in the survey paper of Smith, Ford, and Sidi [SmFoSi], where other related literature

is also cited. For a different approach see the paper by Sidi, Ford, and Smith [SiFoSm].



Convergence propertiesof MPE and RRE forsequences generatedby a scheme such as (1.2)

have been studiedextensivelyin vaxiouspapers.The convergenceof5_.kforn --*oo isthe subjectof

a paper by Sidi[Sii]and of another by Sidiand Bridger[SiB].The firstof thesepapers isconcerned

with the casein which the matrix .4in (1.2)isdJagonMizable,whilethe second isconcerned with

=_defectivematrix .4.The behavior ofs_,kforfixedn and increuing k isthe topicof am axiditionM

paper by Sidi[Si2].This paper alsodiscussesthe equivalenceof MPE and RRE and other related

vectorextrapolationmethods, a.sthey axeappliedinconjunctionwith (1.2),with Krylov subspace

methods, astheseaxeappliedtothe linearsystem(I-.4)z = b.In paxticulaz,itisshown in[Si2]that

the vectorss0,kgeneratedby MPE and RRE axepreciselythosegeneratedby themethod ofA.rnoldi

[A.r](seealsoSa_d [Saa])and the method ofgeneralLizedconjugateresiduals(GCR) of Eisenst_-t,

Elman, and Schultz [EiEISc],respectively.(In other words, Krylov subspace methods produce

only the firstrows of the arraysof approximationsproduced by the correspondingextrapolation

methods.) The conjugategradienttype method ofA.xelson[A.x],the method ofYoung and Jea [YJe]

thathas been designatedORTHODIR, and the generalizedminimum residualmethod (GMRES)

of Sa,_dand Schuitz[Sa_Sc]axe allmathematicallyequivalentto GCR. In casethe matrix ]"- .4

ishermitian,the method of A.rnoldiand GCR areequivalentto the method of conjugategradients

of Hestenes and Stiefel[HSti]and the method of conjugateresidualsof Stiefel[Sti],respectively,

and when .4isantihermJtian,they axeequivalentto the method ofgeneralizedconjugategraxlients

(GCG) of Concus and Golub [CoGo] and Widlund [W] and to ORTHOMIIN(1) of Vinsome [Vii,

respectively.It should be mentioned, though,that,unlikeKrylov subspace methods that can be

used inthe solutionoflinearsystems only,MPE and RRE and other vectorextrapolationmethods

can be employed in the solutionof nonlinearas wella,slinearsystems. The reasonforthisisthat

vectorextrapola'cionmethods axe definedinterms of a vectorsequence,and whether thissequence

axisesfrom iterativesolutionof a linearor nonlinearsystem isirrelevant.The Krylov subspace

methods, on the other hand, make directuse of the matrix of the linearsystem being solved. In

addition,they are not based on any fixedpointiterativemethod forthislineaxsystem.

In Ford and Sidi[FoSi]the existenceof an interestingfour-termrecursionrelationamong the

,sn,kisshown. This recursionrelationisofthe form

s,_,,+1= a_,ks,_.k+ _,_.k-s,_+1.k-1+ (1 - an.k- _,_._)_,_+1,k (1.s)

forsome scalarsa,_._and _,_._.

FinaLly,in a recentwork by Sidi[Si3]efficientand numericallystableimplementationsof MPE



and RRE are given. This work also contains a FORTRAN 77 program that was used in produdng

the numerical results reported in Section 6 of the present work.

As mentioned in [Si3], when one applies MPE and RRE to a Linear system in the so c_lled

cycling mode (to be described later in this section) with s,_,k, n and k being held fixed, much better

convergence behavior is observed for even moderate values of r_ than for n = 0. It may also happen

that no noticeable convergence takes place for n = 0. This is a very curious phenomenon, which

we would like to try to explain in this work. It is obvious that any explanation of it would have to

•be through the anaiysis of s,_._ - s for finite values of n and k.

We would Like to emphasize that the results of [Sii] and [SiB] concerning _,_,_- _ are asymptotic

in nature, i.e., they capture the true behavior of s,_,k for n ---. _ with k fixed, in an optimal way. For

example, if we assume the matrix .4 to be di_gon_zable, and order its distinct nonzero eigenvalues

A1,A_,..., such that IAll >_ ['_I >- "", then, provided [,_k[ > IAk+ll and z0 - s has contributions

from each of the in_'ariant subspaces of A associated with A1, A2, ..., Ak, we have, for both MPE and

RILE,

$,_,k- s = 0(I_,_+II'_) as n -.*o_. (1.6)

NaturaLly, a result such a.s this, although good for sufficiently large n, cannot explain the behavior

of s_._ for small or moderately large values of u and arbitrary values of k.

The results of [Si2], on the other hand, are stated in terms of inequalities, hence might be

considered appropriate for all values of n and k. For example, when the matrix A is d.iagonaiizable,

and all the eigenvalues of I - A are real and positive, #,, and #=_ being, respectively, the largest

and smalIest of these eigenvalues, for both MPE and RRE,

- -<-z'Tkll=o- - tl, (1.T)

where

=_. (1.s)
rl= v_+l, #_,,, '

and l]" I[ is _my vector norm and K is an appropriate positive constant independent of k. This

result basically tells that [ISo.k - sl[ is smaller than [[zo - sl[ practically by a factor of 77k. Reca.]JJng

now that J,_,_ is the result of applying MPE or RRE to the vector sequence {zi}_= 0 starting with

z,_ instea_d of z0, for all n and k, we can replace (1.7) by

II ,,.k- stl _<K,7 II=,, - sll. (1.9)



This inequality provides us with an upper bound on IIs,_.k - s]l/[Iz,_ - sin. Ultimately, however, we

would Like to have an upper bound on lls,_,k - sIl/]lz0 - all. For this we make use of

in 1.9), obtaining finally

z. - = A"(=o- s) (1.1o)

where K' isan appropriatepositiveconstantindependentof k, and r = p(A), as before.

Despite the fa_tthat (1.9)and (1.11)hold for MI , and k when A isdiagonatizableand the

eigenvaluesof I - A are realand positive,both of these inequalitiesare much too crude and

pessimistic.In addition,as has been mentioned in [Si3],and has been observedin many numerical

examples,the convergence of s,.kto s isfarbetterthan suggestedby both (1.9)and (1.11)when

n iseven moderately large.In other words,forincreasingk,betterconvergenceratesare observed

for s,_,kwith n > 0 than fors0._.Actually,thisshould be expected judgingfrom the symptotic

resultin (1.6),although the lattercannot be used to quantifythisinterestingphenomenon.

In additionto being interesting,the above mentioned phenomenon isalsopotentiallyvery useful

in the follov,ing sense:Suppose MPE or P,RE isbeing applied in conjunctionwith the iterative

scheme of (1.2)in the .t ;i_..smode. 'ibisisad'deved}.'-performing the stepsbelow.

Step O.

Step I.

Pick z0,n, and k.

Compute z1,z=,...,z,_,...,z,_+k+1by (1.2),

and compute .%.._.

Ifs,_,_satisfiesaccuracytest,stop;

otherwisesetz0 = s,,,k,and go to Step i.

(1.11).

Doing Step 1 once is caJJed a cycle. Now in the cycling mode the accuracy test may be passed

by s,_.k with n > 0 in fewer cycles than by s0.k. Even though the number of iterations with (1.2)

is n + k + ! for s,_,k as opposed to only k + 1 for s0,_ in each cycle, the overhead caused by the

application of MPE or RRE may increase significantly the computational cost of cycling with So.k-

We may thus end up paying a higher price for cycling with So,k than with s,,k for n > 0. This

will be especially pronounced in cases where the iterative scheme in (1.2) is inexpensive, which

may come about if A is very sparse. It may also happen that the total number of iterations with

(1.2) will be less for cycling with s,._, n > 0, than for cycling with s0,_. It may even occur that

cycling with so._ stal!s numerically, whereas cycking with s,_._, even with a moderate value of n, can

produce very quick convergence. A21 tNs has been observed in many numerical examples.

Step 2.



Our purpose in the present work is to provide a rigorous explanation of this phenomenon. We

accomplish this by deriving upper bounds for l[s.,k - s][ of the form

lls.,k- sll_</(n,k)llzo- sll, (1.13)

which capture the true behavior of s,_,kquiteaccurately.This is done in Section3. In Section

4 we derivesome easilycomputable upper bounds f(n,k) forcertaincases.This isaccomplished

through approximate solutionsto some best approximation problems by incomplete polynomials,

whose near-bestqualitiesare verifiednumericallyin Section5. Finally,in Section6 we givetwo

numerical examples to support allthe claimsthat we make throughout the paper. One of these

examples involvesthe applicationof MPE or RRE to a linearsystem that arisesfrom a finite

differencediscretizationofa two-dimensionalconvection-diffusionequation.The convergenceofs,_.k

formoderately large n isextremely quick in the cyclingmode even when the underlyingiterative

scheme isdivergent,whereas .s0,kin the cyclingmode stallsor isvery slow at best. Cycling with

s0,k using RRE produces results identical to those that are obtained from GCR(k) or its equivalent

GMRES(k), as follows from [Si21 and as mentioned in the previous section.

The examples of Section 6 and the theory given in Sections 3 and 4 thus make it clear that

vector extrapolation methods may be more fleyAble and may achieve better accuracy than Krylov

subspax:e methods, and may produce very good results also where the latter may fall completely.

2 Technical Preliminaries

In the previous section we mentioned that the approximations s,_,k to s, obtained from the vector

_ {,_,k)
sequence {z:}_= o are of the form given in (1.3) and (1.4). For MPE the scalars 7.i are defined

by the linear equations
k

.7=0

whereas forRRE they are definedby

=0, O<i<k-1,

k

3=0

(2.1)

k

"u,_+j)Vj = O,
2=0

O<i<k-1,

k
_ (.,k)

F_,"j
:=0

=1, (2,2)



where

u, = ,'_:,= x_+i - x_ and w_ = Z_u_ = Z_2zi, { = 0,i,..., (2.3)

and (.,.)is the Euclidean inner product on C A'. These equations a.ud ensuing determJna.ntal

representations for s,,,kwere firstpresented in [Sill.The determina.utal representations were very

useful in the convergence analysis of a,_,kfor r_---.oo with k fixed.

When the vector sequence {z/}_°=oisgenerated by the lineariterativescheme in (1.2),we define

the residual vector r(z) associated with a_uarbitrary vector • by

r(x)= Az + b- x. (2.4)

_,_ also define the matrix C and its hermitian part Cs by

C=I-A and C_=I(C+C').

\Ye let

(2.s)

'}Idenote the vector /2-norm induced by the Euclidean inner product in C 'v, or the

operator norm induced by this vector norm. In addition, in case C_ is positive definite, we define

the vector norm !I" ]I' by

lt=li' = _(=,c._), (2.6)

and let ii" il' stand for the induced operator norm as well.

It is shown that when the vector sequence {zj}_= o is generated by a linear iterative scheme

such as (1.2), s_,k, for both MPE and RRE, exists and is equal to s, provided k is the degree of

the minimal polynomial of the matrix A with respect to the vector u,_ = L_z,_ = z,_+l - z,_. It has

been shown in [Si2] that when k is less than this degree, then _,_.k for RRE always exists, but s,_.k

for NIPE does not necessarily exist. A sufficient condition for e_stence of s,.k for MPE in this case

is that Cz be positive definite, see [Si2].

We now state a result concerning the error 5n.k - s that has been given in [Si2].

Theorem 2.1. For RRE

II,'(s,,,_)ll< IIQk(C),'(=,,)ll, (2.7)

while .for MPE, assuming that C_ is positive definite,

II_.,k- _11'-<LItQ_(C)(=. - s)ll', (2.s)

where L is a constant given as
_&

z.= liCEnce. _I1. (2.9)



In both (2. _') and (2.8), Qk( z) is an arbitra_ polynomial of degree at most k that satis fiesQk(O) = 1.

The resultin (2.7)followsfrom the analysisof GCR given in [EiEISc]and the equivalenceof

RRE and GCR that isproved in [Si2].In [Si2]a unifiedapproach ispresentedfrom which both

(2.7)and (2.8)can be obtainted simultaneously.Theorem 2.1 willbe the startingpoint of our

analysisin the next section.

Beforeclosingthissectionwe mention thata resultsuch as (1.9)can be obtainedfrom Theorem

2.1by replacingthe righthand sidesof (2.7)and (2.8)by

I1_(_.,_)11-<IIQ_(c)II IIr(=.)ll forRRE (2.1o)

and

Ils.,k - _[[' _<LliQ_(C)II' ll=. - nil' forMPE,

respectively.For furtherdetailsand developments,see [Si2].

(2.zl)

3 Derivation of Upper Bounds

Theorem 3.1 isone of the main resultsofthissection.We use the notationof Sections1 and 2

throughout.

Theorem 3.1. Define

and

= 2i=IIA"Q (C)It

V=,_= _i_ IIA"Q_(C)II',

where Q_(z) are polynomials of degree at most k that satisfy Qk(O) = 1. Then

IIr(_..k)ll < r.,kllr(=o)ll :orRRE

and,prodded C_ ispositivedefinite,

IIs.,k-sll' <__Lr'_,kllxo-sll' for MPE,

with L as given in (2.9).

(3.1)

(3.2)

(3.3)

(3.4)



Proof. First we note that

and

,(=) = c(_ - =) (3.s)

z,_ - s = An(zo - ,s), for all n. (3.6)

Substituting (3.6) in (2.7) first, and using (3.5) next, we obtain

llr(_,k)ll _<IIQk(C)A"r(x0)tl for RI_E. (3.7)

Here we have also made use of the fact that A and C commute, which is a result of (2.5). The

result in (3.3) now follows from (3.7) if we also recall that the polynomial Qk(z) in Theorem 2.1 is

of degree at most k and satisfies Qk(0) = l, but is arbitrary otherwise. The result in (3.4) can be

obtained from (2.8) in exactly the same way.

As has been shown in [Si2], for any matr_ G,

I!GLI'- IIC_CC_ _"II, (3,8)

from which we have

Using (3.9) in (3.2), we obtain

i[G[I' = licit if GC. = C._,

p

IlCll' < k/cond=(C,_)liCii otherwise. (3.9)

E',_,k= r,,,k if C normal,

F',,,. _< ¢cond;(Ca)Fn.k otherwise. (3.10)

This result enables us to urd_' the treatments of MPE and RRE, as F,_._ is now the only important

quantity that needs to be analyzed a.s a function of n and k.

It is very instructive to compare, e.g., the two bounds concerning s,_,k for I_RE that are given in

(2.10) and (3.3). We observe that the ,matrix A '_ in (2.10) forms part of IIr(z.)ll, whereas it is part

of the operator A'_Qk(C) in (3.3). It is this shift in the location of A '_ that makes the difference

between the qualities of these two upper bounds.

Hereafter we assume for simplidty that the matrix A is diagonalizable. We shall denote the

eigenv'Mues of ,_ by AI,,_._., .,,_N, and the matrix that diagona!ir'zes A by R, so that

A=RAR -_ 3.= diag(,_1 _2, *rv) (3._.1)

IO



We shall also define

Theorem 3.2. Define

Then

and

k

_'k = {q(_)= E"_;: q(1)= 1}. (3.12)
/=0

rh = _n maxl&'q(_dl. (3.13)

r..k = r'_.k = rh i/ c (or A) normal (3.14)

r.,k _< cond2(R)r_,k

if C (or A) nonnorrnal. (3.15)
1

r'.,_ < conddC}R)r:,,_

Proof. The results above follow by substituting (2.5) and (3.11) in (3.1) and (3.2), and realizing

lthat the matrix A'_q(A) is diagonal. We also need to use (3.8) with I',. k. The details are left to the

reader. "n

Note: It is obvious that for n > 0 the maximum in (3.13) is being considered on the nonzero Ai only.

We can nov,' combine Theorems 3.1 and 3.2, and obtain bounds in terms of F_._. For the sake

of completeness, these are summarized below as Theorem 3.3.

Theorem 3.3. Under the conditions of Theorem 3.2, for RRE

llrIs..k)ll< { r_,_llri:o)ll- cond2(R)r:,,_

if C (or A) normal,

otherwise,
(3.16)

and for MPE

II_,,._,-sl]'
I1=o-sll'

with L as given in (2.9).

Lr;,,k ij C (or A) normal,
<

Lcond2(C_ R)r_,_ otherwise,

(3.17)

It turns out that the upper bounds given by (3.16) and (3.17) are quite tight when A is normal

or when cond2(R) is small. When cond2(R) is large, however, they become pessimistic. In this

case one has to go back to (3.3) and (3.4) which axe still good, and try to bound r,,k and r_, k in

a manner different from Theorem 3.2.

Finally, by applying Theorem 3.1 to cycling we obtain the following result.
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Theorem 3.4. Let n > 0 and k > 0 be fi.zed integers and denote by _(i) the approzimation s,,j,

that is obtained at the end o/the ith cycle when MPE or RRE is being used in the cycling mode as

described in (1.12). Then, under the conditiom of Theorem 3.1,

and

IIr(s(.'!k)ll<_.(r..k)'llr(_,.,,)ll for RRE

(0 ' _ for MPE,s.,_ - sll' _<(zr.,k) IIz,.. - sll'

where z,,i, is the initial vector at the beginning of the first cycle.

(3.18)

(3.19)

4 Bounds on F_, k

From the definition of r_._ given in (3.13) it is obvious that precise knowledge of it requires

complete information on the spectrum of A, which is not available in genera/. We may, however,

obtain very good bounds on F_,.k for n > 0 if we know that the nonzero part of the spectrum of A

is contained in a set D of the complex A-plane that does not contain 1. (If 1 is an eigenva/ue of A,

the system in (1.1) is singular, contrary, to our assumption in the introduction.) Then, with 7:'_ as

in (3.12),

r_,k < rainmax ik"q(A)l-r_,k. (4.1)
-- qEPJ, IED

IfD isa domain, then, by the maximum modulus theorem forana/yticfunctions,

r_,_ < r n rain max IA_q(A)I, (4.2)
-- n,k = q6P_ _E_D

where aD denotes the boundary of D.

_:_ _ezerM, the min-ma.x problems of (4.1) and (4.2) cannot be solved analytically in a simple

way. When n = 0, some analytic solutions are known, however. The best known is the one for _he

case in which D is a finite real iaterva/[e,_] with e < _ < !, a being a.rbitraxy otherwise. In this

case the optimi polynomial q(A) is T_(g(A))/T_(g(1)), with g(k) = (2A - a - 8)/(/9 - a), where

T_(z) is the Chebyshev polynomial of the first kind of degree k. Consequently,

r_ 1 (4.3)
-- ,r" / 2-a-J

__)"

This result can be found in, e.g., Va.rga _'a]. We mention in passing that the result in (!.9) can

be obtained directly from (4.3). The a.nalytica/solution of the re.in-max problem for D = {,_ : ,k =

i_,-3 < _ < 3,_ > 0 real} has been provided recently by Freund and Ruscheweyh [FrR], who also

12



givea numerical method for the case in which D is amy line segment in the complex A.plane not

containing 1.

We _e not aware of amy solution to the min-msx problem in (4.1) that is known ana.lyticaJly

when n > 0. Instead of trying to solve this problem, we shall derive easily computable upper

bounds for r_o,_ for all n and k for some sets D.

4.1. The Case D = [ot,_], 0< ot <_ < 1

This isthe simplestand most instructivecaseand we would Liketo analyzeitin some detail.

The resultthat we obtain forthiscasewilleventuallyshow the way to obtaingood bounds forr,_Dk

forothersetsD as well.

We start by observing that the re.in-max problems in (4.1) and (4.2) are constrained best uniform

approximation problems by incomplete polynomials. The problem relevant to the present case is

the one in (4.1), which now reads

r_Dk = rain max @'aiA n+i . (4.4)

Uniform approximation on the real interval [0,1] by incomplete polynomials has been studied by

Lorentz ILl and, in a series of papers, by Saff and Vazga [Saf Val, Saf Va2, Saf Va.3, Saf Va4].

The following result is similar to a corresponding result in [Sa.fVal] that was proved for the

interval[0,1].

Lemma 4.1. There ezists a unique monic polynomial p'(A) of degree k that satisfies

__<x<3 - ,__<:,<,3 '

where p(A) is any monic polynomial of degree k. Also there ezist k + i points _1 < t2 < ... < tk+l,

all in [a,/3], at which A'_p'(A) takes on the value maxa<_<_ [A'_p'(A)I with alternating signs.

Proof. The assertion above follows from the fact the functions A'_,A't+I,...,A '_+_-1 form a k-

dimensional Haz.r subspace on [a,B] since ct > 0. Then A'_p(A) is simply the error incurred by ap-

proximating the function A'_+_ by some function in this Hazz subspace. The proof is now completed

by employing the uniqueness theorem and the alternation theprem on p.80 and p.75, respectively,

in Cheney [Ch]. We leave the details to the reader. []

13



Theorem 4.2. Let p'(A) be as in Lemma 4.1. Then the polynomial q'(A), which is given by

p'(A)
q'(A) = p'(1----'_' (4.6)

solves the min-maz problem in (4.g). Consequently,

I '(1)1 (4.7)

Proof. Suppose there isanother polynomial q(A) E T_ that solvesthe rain-max problem. Then,

necessarily,

max IA"q(A)I< max IA"q'(A)l_

which implies that the the sign of F(),) = A"q'(_,) - A"q(),) at the points t¢ of the previous lemma

is that of A"q' <.,) a_ the same points, t..o_sequently, F(A) has at least k zeros in [a,_]. In addition,

F(I) = 0 by the fact that q(1) = q'(1) = 1. Since 1 is not in [a,_3], we see that F(A) vanishes

at least at k + 1 points in [a, 1]. But F(A) is in the (k + 1)-dimensional Haar subspace on [or, 1]

spanned by the functions ,V_,A "+1, ...,A '_+k, and, therefore, can vanish at most k times on [a, 1].

Vee have thus a contracliction. Therefore, q'(A) in (4.6) is the solution to the rain-max problem.

The proof of (4.7) is now immediate.

We shall aot attempt to determine p'(A) analytica!l_y. We could determine p'(,\) numerically

by the Remes algorithm, see [Ch], although this would not provide us with an analytical upper

,ound for r_,,k. Instead of doing this we shall try. to give a.n analytical upper bound oft F,D,j, in

_erms of orthogonal polynomials. If we let ¢,,.k(A) be the monic orthogonal polynomial of degree k

_'ith respect to the weight function A2" on [e,_3], then we can write

D maxo<_<3 IA"6,_k(A)l
r,,._ < - - " (4.8)

Next, by employing Theorem A.3 from the Appendix, we have

so that (4.8) becomes simply

max k(;X)l=
o<_<3

(4.9)

r.D < 3" k('3)l (4.10)
- t¢.,al)1

We now give a heuristic argument to justify the replacement of p'(A) by ¢,,,k(A). First, we note

that this has come about by the replacement of the best l_-approximation problem

re.inmax IA'_p(A){,p(A) monic of degree k,
p a<_<3

(4.11)

14



bythe best/2-approximationproblem

1

rain IA"p(A)12dA ,p(A) mouic of degreek, (4.12)
P

p(A) = p'(A) and p(A) -" _,,_(A)being the solutionsto the former and the latterproblems, re-

spectively.Next, especiallyfor largevaluesof n, _b,,k(A)has the most important characteristics

of p'(A): (i)As followsfrom Lemma 4.1,p'(A) has preciselyk simple zerosin (a,fl).Being the

orthogonalpolynomial ofdegree k on [a,_],(_,.k(A)too has preciselyk simplezeroson (a,fl).(ii)

Sinceforlargen the weight functionsA" in (4.11)and A2" in (4.12)axe much more pronounced in

a neighbourhood offl,the zerosofboth p'(A) and _,j,(>,)willtend to be in a neighbourhood of fl

as well.

The qualityofthe upper bound in (4.10)can be assessedby comparing itwith the lower bound

thatfollowsfrom Theorem A.4 in the appendix. This issummarized in Theorem 4.3 below.

Theorem 4.3. r,,Dk satisfies the inequalities

where

k

- 4) < r.q < 3" ..,
- -_=0

(4.13)

_j = A_"_}cpn,j(A)[2dA, j = 0, 1,... (4.14)

Unfortunately,the polynomials0,,_(A)are not availableanalytically,hence analyticalforms for

the upper and lower bounds on rDn,_are not known for thiscase. The sourceof thisproblem is

the factthat a > 0. Interestinglyenough, if(_isreplacedby zero,then ¢,_,k(A)isexpressiblein

terms of Jacobi polynomials. In fact, 0,_.j,(A), which nov," is the kth orthogonal polynomial with

respect to the weight function A2'_ on [0, _], is a constant multiple of P(k°'2'_)(2A//3 - 1) by (A.4) in

the appendix. First,we observethat

D' D' =FD < rain max IA q(A)I -=F ,k, (4.15)
n,_ - v_'_,o_<__<_

D
and that, for large n, r_ will not be too different from rn, k. The reason for this is that the weight

A" in the inter_-a2 [0, _] is negligible compared to its average value in the interv-d [a, fl], hence there

cannot be a great difference between the solutions of the two rain-max problems on [a,_] and on

[0, _]. Next, by (A.2) and (A.3) in the appendix, we have, respectively,

_o_ A2" [P_(°'2")(2A/_ I dA _2_.1 (4.16)--I)J 2 = 2n+2k+ i'
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and

P(°'2")(2A/_ - I)[A=_ = Pk(°'2")(1)= i. (4.17)

Using (4.16) and (4.17) to make the appropriate substitutions in (4.13), we now obtain an upper

and a lower bound for rD,'k,which are expressible in terms of Jacobi polynomJa/s, and hence are

easilycomputable. These are given in Theorem 4.4 below.

Theorem 4.4. rD'k satisfies the inequalities

{E_:0(2_+ 2j+ i)[P_°'_"_(2/_-i)],}½
fl'_ (4.18)

<_r_'_ < e_o.2°_(2/__1)

By the assumption that 0 < fl < 1, we have 2/fl - 1 > 1. Thus, by Theorem A.1 in the

appendix, the sequence {Pj(°'2")(2/fl- I)}_= 0 ispositive and monotonically increasing.We can use

D'
this to replace the lower bound on r,,a by a weaker but more informative one. Tkis is done in

Corollary 4.5 below.

Corollary 4.5. r_V'k satisfies the following weaker form of (4.I8):

D'
<_ I'., k _ (4.19)

_/(k + z)C2_+ 2k _1)P_°'_(2/_ - 1) P_°'_J(2/,_- 1)"

As can be seen from (4.19), the upper and lower bounds on F,D'kare very close to each other,

•and thisimplies that the upper bound itquite tight. This is so especially for moderate values of n

and k, as willbe demonstrated numerically later.

For the sake of completeness, we combine the sequence of resultson the upper bounds in The-

orem 4.6 below.

Theorem 4.6. r_,k, D rG a_F .,_ , and related by the inequalities

D'rG < r_D,_< r.._ < L,k, (4.20)

where

t,,.k - = (4.21)
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Finally, we note that the upper bound l_..k for r:,4 is valid for n = 0 also when the matrix A

in (1.1) has zero eigenvalues as well as positive ones. In this case the Jacobi polynomisl P_(°'2")(z)

reducesto the Legend.repolynomial P_(z).This causesthe upper bound to be slightlyinferiorto

that obtainedfrom the correspondingChebyshev polynomia/as in (4.3).

Note: Using Preposition3 in [Sa.fVal],and the argument in the proof of Theorem 4.2,we can

write,forn = I and arbitraryk and D' = [0,_],0 < _ < i,

q.(A)= T_÷_((I- _)A/_+ v)
T_+_((I- ,7)/;3+ V)

and

m' 1

I'I'_= Tk+1((l- _7)/_q + 77)'

where 77= - cos(:r/2(k+ i)).

4.2. The Case D -- [-3,-a], O< c_ <

Note thatwe have not demanded 3 < 1 forthiscaseas I isnot containedinD forany value of

_. The treatment of thiscase isidentica/tothatof the previouscase.With the interval[a,fl]in

the previous case replaced by the interval [-fl,-a] of the present case, Lemma 4.1 and Theorem

4.2 remain unchanged. Theorem 4.3 remains essentially the same except that ¢,._(_) on the right

hand side of (4.13) now reads ¢,.k(-_), and the uj have the same vMue as before. As for the

polynomiaJs orthogonM on [-'3, 0] with respect to the weight function A_'_, they are now constant

multiples of P_°'2")(-2A/Z - 1). Denoting [-_q, 0] by D', (_.18) and (4.19) now read, respectively,

_" D*

< r,.__<

+ + _ i)I
(4.22)

and

%/(k6"-l)(2n+ 2k+ I)Ip_°'=")(_21,__ i)[- - ]P_°a")(-21$- I)l
(4.23)
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Similarly, (4.20) remains valid with (4.21) replaced by

/3,_ /3n+k

_:o . (I+/3)J

(4.24)

As before, (4.23) follows from (4.22) by observing that the sequence {IP_°'2")(-2/_- 1)l}j_-_o is

monotonically increasing by Theorem A.1 in the appendix, since -2//3 - 1 < -1 for/3 > 0.

4.3. The Case D = [a,/3], a < 0 </3 < 1

Since we are not able to make direct use of the theory of Hair subspaces in this case, we do not

know whether Lemma 4.1 and Theorem 4.2 have analogs. We may, however, still use the orthogonal

polynomials ¢_.k(A) on [_,J] with respect to the weight function _:'_. Consequently, (4.8) holds

trivially. Theorem A.3 from the appendix this time applies separately in the two subintervals [a, 0]

and [0,3]. As a result, (4.13) becomes

{(3 - _) _--_I o.,j(1)12/vJ} -i < r.D_ -- I¢_,_(i11
1=0

(4.25)

with vj as _ven in (4.14).

Again, for arbitrary a and ,3 the orthogonal polynomials ¢,_,k(A) are not known an',Jytically, so

that the bounds in (4.25) can be given numerically only. For the case a = -/3, however, the _,,,k(A)

can be expressed in terms of Jacobi polynomials, see (A.5) in the appendix. We have,

p/;O,,,-1/2) (2(A//3)2 _ l) if k = 2u,
_)n.k( )')

( ), /_q,_p(O,n+l/2),_;,j__ (2(A//3) 2 l) if k = 2v+ 1,

(4.26)

i.e., ¢,_,k(_,) is an even or odd function of A, depending on whether k is even or odd, respectively.

As a result of (4.26), we obtain

_n.k(3) = 1 for all n and k, (4.27)

and

p_O,,-,-_/2)
_.,_(1) = (2//32- 1) ilk = 2_',

.3-1P (°'"+1/2) (21/3 # - 1) if k = 2v 4- l,

f_

_. =/_z "_2"[a_,J('_)!2d'_ _ 22.*_- n-)+l/2 for aZInandj.

(4.28)

(4.29)
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Combining allthesein (4.25),we obtain

- "'*-I¢.71)I{E;=0(2n+ 2j+ l)i@.,j(1)[2}I/_< FD < " (4.30)

Since0 < _ < i, 2/_q2- I > i. ConsequentlyTheorem A.2 applies,and we have thatthe sequence

{4,,,./(I)}_0 ispositiveand monotonicallyincreasing.With the help of this,we can replace(4.30)

by the weaker but more informativeform

SU/II m a/'y,

r:.k <_ r D.,_ _< r.,_, (4.32)

where

with

.k+l,u = [ J and # = L----i--j, (4.34)

_s foUows from (4.28) and (A.7) and (A.S).

We note that the upper bound l',,agivenby (4.33)and (4.34)can be improved somewhat as

follows:By the fact that IAI"issymmetric with respectto the originin D = [-_,_], we see that

the solution q'(A) of the rain-max problem in (4.1) is even or odd depending on whether k is even

or odd, respectively.Thus

min_ep . maz.o<x<_ [A"h(A2)I

minhev_ maxo<;_<_ [A"+lh(A_)[

if k = 2u,
(4.35)

if k = 2/,'+ 1.

Making now the change of variableA2 = r,we have

t

rO _ min_ep .maxo<,<a2 Ir"12h(r)[ if k = 2u,
.,k= (4.36)

[ minhep_ maxo<,<a2 Ir("+_)12h(r)[ if k = 2v + 1.

We finallyemploy Theorem 4.4to obtain

< ro <
v 71 -- .,2v --{E,=0(+ 2s+ _)[p)o..l(_/__ _)]=)½ e_o,._(_/__ _)

D (4.37)< r.,=_+_<__
" n 2)[P_°'"*I)(2/_- 1{Y'Jj---0(+ 2j + )]=}_ P(0'n+l)(2/_5: - 1)"
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The upper bounds on r,Dkcan again be unifiedto read

F.D_< r..k= (4.38)

with v and/_ _s definedin (4.34).Comparing F.,kin (4.38)with I'.,kin (4.33),we see that the

formerisslightlysmallerthan the latter.

In casea # -13,but a > -I, we can use the treatmentinvolvingthe Jacobipolynomialsto get

an upper bound on F,,Dk.For thiswe let_ = max(l_l,3).Then D = [,',,/3]C_[-_,;9]= D. Thus

< = mJn max
- ' _e;'___<__,<__

IA"q(A)[< , (4.39)

/J

as followsfrom (4.3S).Here v and # are as in (4.34).Of course,thisbound willbe closeto F,D_

provided ]c_land 3 are sufficientlycloseto each other.

4.4. The Case D = {A : A = i(,-3_< __< 3, fl > 0 real}

As before, we can imme_ate!y start using the orthogonal polynomials ¢_,_.k(A) over D with

respect to the weight function IAi2_'. These polynomials are given by

{ P_°'"-1/2)(-2(),/,_)= - 1) if k = 2_,,
¢,,,_(;,) =

-i (A/,3)P(_°"_+l/2)(-2(A/_3) 2 - 1) if k = 2v + 1.
(4.40)

With ;n/swe can easilyveri_"that(4.27)holds,(4.29)holdsin the sensethatu/=/32`_+z/(n+ j +

I/2),and (4.25)holds _ith the argument (2/_32- i) replacedby (-2/32 - I).Consequently,(4.30)

holds.In case 0 < ,3< I.Theorem A.2 from the appendix applies,and we have that the sequence

{I¢,,..7(I)[}_°=0ismonotonicallyincreasing.Thus (4.31)holds.Finally,(4.32)holdswith

3n _n+k
t.,_: - , . = , (4.41)

where v and _ axe as given in(4.34).

Going through the arguments in the paragraph following(4.34),we can improve the bound on

F,Dk inthiscasetoo. In f_t, (4.37)holdswith the argument 2/,92- 1 replacedby -2/_ 2- !. The
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new upper bounds can again be unified to read

_n+k

_n,k ""

+  2)i

(4.42)

4.5. The General Case

Drawing on our experience with the previous cases, we now propose to use the appropriate

orthogona.l polynomials to construct upper and lower bounds for r D when D is arbitrary.n,k

Let {¢_,,J()_)}_¢=0 be the sequence of polynomials orthogonal with respect to the nonnegative

weight function IAi 2_, in the sense

/n IAI2"_¢,,,j(A)d12 = _,S_;j. (4.43)

Here fi stands for D when D is a curve or a domain, or the boundary of D in case D is a domain.

As a result, dr2 is the line dement on 12 if 12 is a curve, or the area element if 12 is a domain. By

(4.1) and Theorem A.4 in the appendix, we have

k

:=o - - 10,,,_(1)1 ' (4.44)

where
t

=/f_ d12. (4.45)C

Of course, in order to determine these bounds we need to find the polynomials ¢_,k(A) numerically,

possibly through the 3-term recursion relation that they satisfy. In addition, this recurs]on relation

needs to be determined numerically too.

Important simplifications take place when D is a line segment between a and _, where a and 3

can be complex, in general. Of course, the complex number 1 is assumed to be outside/9. Making

the change of variable A = a + eie_, where 0 = arg (_ - a), we realize that ¢,_,k(,_) is actually a

real polynomial in _ orthogonal on the real interval [0, (_/- a)e -i8] = I with respect to the weight

function IA}2'_ = la + eie_] 2'_. This weight function is either strictly monotonic on I or has only one

relative minimum there. In both cases, we can invoke Theorem A.3 from the appenddx to simplify

max;_eD IA'_¢,_,_(A)I that appears on the right hand side of (4.44). In case the weight function is
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monotonicon I, let

Then

a if I_I > l_l
I_=

if [_I > [al •

m_xl_"¢.,k(_)I = I_"¢.,k(_)l.
AED

In case the weight function is not monotonic on I,

(4.46)

(4.47)

max I>,"_.,kCA)l= m_{la"0.,_(_)l, Ifl"O.,k(fl)l}. (4.48)
AED

Further simplifications become possible when the origin is on the straight line containing the line

segment D. First, assume that the origin is not in D, and let [al < !ill without loss of generality.

When1_ ' 21 -[ > 0 _-'._,". ._p_c,_ .......(_\_,.' _....... 0,2n)(?\/,_ I), the polynomial orthogonal on the line

segment joining 0 and ,3 with respect to the weight function [AI2'_. Thus

D I_1" I,OI''+j'
r,_._ _< = (4.49)

E_=0 + (1-,_yl

Next, assume that a = -3 so that the ori#n is at the center of D. For this ca_e, we have

,_ I.,0''+;_
,._ _< , (4.s0)

I_-_=0 j

where v and /_are as in (4.34).Lower bounds on F_D,kcan similarlybe obtained with the help

of the appropriateJacobi polynomia/s.We should remember, though, tha'_,9in (4.46)-(4.50)isa

complex number.

Finally,in caseswhere Z) isan.ellipsewith itssem.imajoraxisalong the realor the imaginary

axisin the >,-plane,we can extend our previousresultsto obtain bounds on F_,,kin conjunction

with Bernstein's theorem, which is stated below.

Theorem 4.7. Let p(z) be a polynomial o/degree at most k. Denote by 8.. the ellipse with loci at

_-!, semim_jo__:is {(,- + :-_) _,_,_s_mimi_o_o_is ½(,-- ,--_), ,,,_,e__-> 1. The,',

ma.xl,K=)l< ;-_ m_ ip(-')i. (4.51)
-'E_. -- zE[-I,I]

As a result of :his theorem, we see that if the foci of the ellipse are at a and _, 0 <_ a < 3 < 1

or at -,3 and -a, 0 _< a < 3, or a: ±3;0 < 3 < 1, or at _i13,_ > 0, then the bounds F,_,_ given
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in (4.21) or (4.24) or (4.38) or (4.42), respectively, need to be multiplied by 7"'_+k for some r > 1,

whose size depends on the size of ellipse. Of course, this will be so provided 1 lies outside the

ellipse. The thinner the e11ipse, the closer r is to I.

5 Appraisal of the Upper Bounds on

From the definitionof r_,kgiven in (3.13),itisclearthat the sequence {/'_,k}_°=oismonoton-

icallydecreasingfor allspectra. Itisalsoclearthat,when p(A) < I,the sequence {r_.k)_=0 is

monotonically decreasing.We should,therefore,make sure that the upper bounds that we obtain

forr_,_ have these two characteristics.A cursorylook at the expressionsforrn,kgiven in (4.21),

(4.24)_(4.38),and (4.42)forthe differentspectrarevealsthat both characteristicsare possessedby

the/_,_.¢¢, in generaJ. When p(A) < 1, the sequences {r,_.k},_°°__oare mono_onJcaJJy decreasing for all

cases considered.The sequences "{F_,k}k=0are monotonicallydecreasingfor:he spectracontained

in D1 = [c,,/3], 0 < _ < _3 < 1, D2 = [-_3,-,_], 0 < a < _, D3 = [-_,_], 0 < /3 < 1, and

D4 = {A = i(: -J <___ <__3, /3 > 0 real }, _q <_. 1. Recall that /',_.k for D4, whichis given in

(4.42), is yard for all 3 and not only for _ < 1. For arbitrary/3, the sequences {I',_.2_,},,=o and

(/_,_.2_+1}_=0 for D4 are monotonically decreasing, as follows from (4.42) and Theorem A.2 in the

appendix.

Let us first compare the r,_._ for the sets D,, i = 1,...,4. It is seen by comparing (4.21) and

(4.24) that, for a g_ven spectral radius/3, _,_,_ for D2 is smaller and decreases more quickly than

that for D1. Similarly, for a given spectral radius _, f',_,_ for D4 is smaller and decreases more

quickly than that for D3. For a _ven spectra] radius, I',_,a is smallest and decreases most quickly

forD2.

We would now liketo demonstrate by actualcomputation that the bounds f',_.kthat were

presentedinSection4 are veryclosetornD._.Inallofour computations we pickedDI - [0,flI,/32 -

[-/3,0],L)3 --[-/3,D],and L)4 = {A = i_: -D _<{ _<fl),allwith fl= 0.96.In allcaseswe also

computed the upper bounds obtained for(2.10)and (2.11)by Chebyshev polynomials,namely,

forD = [c_,,_],a < _ < I,thus coveringDI,D2, and D3, and
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forD = D4. (For DI,D2, and D3 the inequalityin (5.1)isactuallyan equalitywhen n = 0 as

followsfrom (4.3).)As mentioned previously,these bounds do not explaSnthe behaviorofs,_.kfor

n > 0. They axe given only forthe sake of comparison. Finally,we computed the lower bounds

on l'_kinorder to verifythat the upper bounds r',_,kareindeed quitetight.All the computations

reportedin thissectionwere done on am IBM-370 computer in double precisionarithmetic.

Tables 5.1-5.4contain the lower and upper bounds for r_O._and the Chebyshev polynomial

bounds givenin (5.1)and (5.2),forn = 0,50,100,and k = 0,2,4,...,20.Note the closenessof the

O Note alsothat both boundslower and upper bounds which impliesthat both are closeto l',_,k.

decreaseat an increasingrateas n increases.

6 Numerical Examples

In this section we give two numerical examples that provide ample support for the claims that

were made in the previous sections. All the computations reported in this section were done on an

IBM-370 computer by using the FORTRAN 77 code given in [Si3].

Example 6.1. Consider the linear system in (1.1), where the matrix A is the .V x N tridiagonal

matrix

7"

p ff r

A= p a r , p,a,r real. (6.I)

The eigenvalues of A are given by

Aj = o- + 2v/'_cos N + 1' j = 1, 2, ..., N.

It is seen that for large values of N there is a considerable amount of clustering of the eigenva.lues

near a + 2v/_ and a - 2v_.

By adjusting the parameters p, a, and r we can cause the spectrum of A to be real and positive,

or real and negative, or real and mixed, or pure imaginary, or complex in general. We can then test

the upper bounds on F:,,k given in Section 4. By Theorem 3.3, the easiest tests can be performed

with RRE when the matrix A is normal, since for this case we have

II,'(s,,.k)ll
< r:.k< r. .k< f .k. (s.2)= li'(xo)ll
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The W_,k forthesetestswere computed inextended double precision.The reasonthatwe used such

a high precision is that there is a considerable amount of loss of accuracy in the implementation

of RR.E (or any other vector extrapolation method) to obtain sn,k for large n and increasing k,

especially when the spectrum of A is real and positive. All our numerical results clearly demonstrate

that the upper bound I',,,k for r,,D.k is actually very close to W,,.k, hence presents a true picture of

the accuracy achieved in extrapolation with s,,,k, provided enough precision is used.

In our next experiment we compared cycling with s,,,k for r_ > 0 to cycling with So,k, again

using RRE. This time we did the computations in double precision only, causing round off to be

considerable. Our numerical results for this example indicate that, for a prescribed level of accuracy,

cycling with -_,,,k, n > 0, can be much less costly than cycling with so,),, even in the presence of

round off. The cost of cycling here is being measured in units of one iteration with (1.2). Since A is

tridiagonal in this example, the cost of one such iteration is 3 vector additions and 3 scalar-vector

multiplications, a total of 6 vector operations. As for the cost of computing s_,_, it is made up of

the cost of n + k + 1 iterations and the overhead due to the implementation of RRE. This overhead

is _(k 2 + 5k + 2) vector additions, _(k 2 + 5k + I) sca/az-vector multiplications, and _(k 2 + 3k + 2)

scalar products. For linear systems, by taking advantage of the relation

u,,_ = A u,__l, m = 1,2, ..., (6.3)

we can reduce the cost by 2k vector additions. Thus, the overhead now becomes ½(k s % k + I)

vector add.itions, the number of scalar-vector multiplications and scalar products remaining as

before. Since one scalar product is almost equivalent to one vector addition and one scalar-vector

multiplication, we see that, rougly speaking, the overhead is k 2 + 2k + 2 vector additions and

k24- 4k 4, 1 scalar-vector multiplications, a total of 2k24, 6k 4-3 vector operations. Therefore, within

each cycle, the computation of s,,.k costs as much as n + k 4- 1 + (2k 2 + 6k + 3)/6 iterations for the

present example.

The computations were done for the following cases:

1. p = r = a/2, 0 < a < 1/2. In this case D1 = [0,2a].

Pick a = 0.48, so that DI = [0, 0.96].

2. p = r = -½ < o < 0. In this case/) = [-2a,0].

Pick a = -0.48, so that D7 = [-0.96, 0].

3. p = r < ½, a = 0. In this case /)3 = [-2p,2p].

Pick p = 0.48, so that D3 = [-0.96,0.96].
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4. p = -r, 0 < p < ½, a = O. In thiscase/)4 = {,_= i_: -2p < _ < 2p}.

Pickp= 0.48, so that D4= {,1=i_: -0.96< _<_0.96}.

Tables 6.1.1-6.1.4 provide the values of W,,k and r,,k for k = 0, 1,..., 20 with a = 80. Figures

6.1.1.6.1.4show o _<i <_,-,., log, 1 _<k _<

h', for (i) n = 0 and If" = 10 and (ii) r, = 50 andK = 10, versus the cost of computing the z_ or the

s_.k in the cycling mode. Here z,,,, is the initial vector given as z,,, = (1, live, 1/v_, ..., 1/v_N) r.

The vector b in (1.1) and (1.2) is chosen to be zero so that the solution s is also zero.

Now in the cases treated in Figures 6.1.1-6.1.4 the matrix A is symmetric or antisymmetric.

We next consider the case in which A is neither symmetric not a_tisymmetric. In the numerical

experiment below we pick a = 0, p = 0.6, and r = 0.384 so that the spectrum of A is contained in

[-0.96,0.96]. Since A is not normal, the norms of the vectors u, = A'_uo do not behave like (0.96)"

numerically. Their behavior is more like (0.984) '_, where 0.984 = p + r. To see this we simply take

u0 = (i, 1 .... 1) T and actually compute A'_uo. Table 6.1.5 provides the values of W,,.k and I',_.k for

the interva_ D' = [-0.984 _ _ ...,,0.9_4!, as if .4 were normal, for k = 0, I, 20, with n = 80.._though

I'_,_ is only a heuristic estimate, it, nevertheless, is quite realistic. (The upper bound given in (3.16)

becomes ve_' pessimistic in this case a.s cond2(R) = (p/r) g-1 is of the order of 10193. The effect of

the dimension .V on cond2(R) should be noted here. Even though p and r may be nearly equal, a

sufficiently large value of N can cause cond2(R) to be extremely ta.rge. This will also have an effec_

on the convergence behavior of s,,k). Figure 6.1.5 shows loglo(tlr(z_)ll/[tr(zi.,,)II), 0 < i < n, and

1 < k < A', for (i) n = 0 and If" = 10 and (ii) n = 50 and K = 10,

versus the cost of computing the z; or the s,,_ in the cycling mode, exactly as in Figures 6.1.1-6.!.4.

Example 6.2. Consider the 2-dimensional convection-d.iffusion equation

0=u

Oz 2 Oy= '

u = g on 0_q,

where fl is the unit squ_e. This equation has been used as a test problem for vector extrapolation

methods and Krylov subspace methods on nonsymmetric and/or indefinite systems. See, e.g._

Gander, Golub, and Gruntz [GaGoGr].

Let z_ = i6z, 0 < i < M_ + I, and yj = j_y, 0 <_ j <_ Airv + 1, where 6z = 1/(Mx + 1) and

Ey = 1/(M._ + 1) for some positive integers M_ and M v. We discretize this equation by replacing -A1

the partial derivations at (z,, y:) by central differences. If we now order the unknowns u,.j, which are
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the approximations to the corresponding u(zi, j/j), in the form uu, ul2, ..., atM,, un, u2z, ..., U2My, ...,

u.,_,l, u,,#,2, ..., UM, M_, then we obtain a linear system of equations with a block tridiagonal matrix.

If ,3 = 0 = "r, then we have the usual 5-point discretization scheme for Poisson's equation, in which

case the matrix of the linear system is symmetric and positive deLuite. By increasing _ in the

negative direction we can make the matrix less and less positive definite and ultimately cause it to

become indefinite. By picking 3' _ 0 we make the matrix nonsymmetric, the amount of asymmetry

being directly related to the size of 7.

In our computations we picked Mz = My = 30 so that the number of unknowns is iV =

MxM_ = 900. We also took 9 = 0 as our boundary condition and f = 0, causing the solution (both

of the partial differential equation and of the difference equations) to be zero everywhere. For all

our computations we took zi_, = (1, 1/x/_, I/x/'3,..., 1/, ,/N'¥)r as our initial vector. The iterative

technique used is the Jacobi method. The extrapolation method used in conjunction with this

iterative technique is RRE.

If we write the linear system above as Bz = d, then B is of the form B = 5I - T, where 6 is a

nonzero scalar and T has zero diagonal. This being the case, the matrLx of iteration for the Jacobi

method is simply .4 = /_-:T = I - _-_/?. By Theorem 2.4 in [Si2], the vector _0,k obtained by

appIying MPE (RRE) to the vector sequence x0, r.l,z_. .... , where z_+l = Axj + 6-1d, is equivalent

to that obtained by applying the k-step Arnoldi method (GCR = ORTHODIR = A.xelson's method

= GMRES) to the linear system (I- A)z = 5-1d, starting with the vector z0 as the initial vector.

But since I - A = 6-1B, this linear system is simply a constant multiple of/3'z = d. As a result,

so._ with MPE (RRE) is, in fact, the vector obtained by applying the k-step Arnoldi method (GCR

= ORTHODIR = Axelson's method = GMRES) to the linear system Bx = d, starting with z0 as

the initial vector.

In case the matrix B is of the form B = D - T, where D is a diagonal matrix that is invertible

but D ¢ 6I for any 6, and the matrix T has zero diagonal, the matrix of iteration for the Jacobi

method is A = D-1T. Again by Theorem 2.4 in [Si2] _0.k obtained by applying MPE (RRE) to

the vector sequence zo, z_,z2,..., where zj+1 = Azj _ D-ld, is equivalent to that obtained by

applying the k-step Arnoldi method (GCR = ORTHODIR = Axelson's method = GMRES) to the

diagonall_ preconditioned linear system D-_gz = D-ld, starting with the vector zo.

In Figures 6.2.1-6.2.3 we show logxollT"(xdll, 0 <_i < n, and log_ollr(s,,.k)ll, 1 < k < X, for (i)

n = 0 and tf = 20 and (ii) r_ = 50 and K = 20, versus the cost of computing the z,. or the _,.k in

the cychng mode, exaztly a.s before. The cost of one iteration tiffs time is about 10 vector operations.
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In Figure6.2.1we show the resultsobtainedby picking"r= I00 and _ = 0.The Jacobimethod

convergesforthiscase.In about 500 iterationsthe residuMsdecreaseby as much as 10-11.Cycling

with both .so,20and .s5o,20convergesforthiscase,althoughthe latterproduces much betterresults

fora prescribedaxnount of work.

In Figure6.2.2we show the resultsobtained by picking"r= 100 and 3 = -100. (Incase"7= 0,

such a largeand negative valuefor_3willcause the matrix B to become indefinite).The Jacobi

method convergesforthiscasetoo.In about i000 iterationsthe residualsdecreaseby as much as

10-I°.Cyclingwith Sso,2oconvergesextremelyquickly,while cyclingwith so.2ostallsafterthe first

cycle.

In Figure6.2.3.._'eshow the resultsobtained by picking7 = 125 and j3= -i00. The Jacobi

method now dJver:_es.Cycling with Ssono convergesextremely quickly,while cyclingwith so.=o

stallsas inthe pre-ious case.

Observing tha, r.hematrix of the 5neax system above isconsistentlyordered,we can use the

strategychatwa_ proposed in [Si3,Section7] to furtherreduce the computational cost,reducing

the storagerequirements by lalmosta halfat the saxnnetime. According to thisstrategy,vector

extrapolationmethods axe appliedto the vectorsequence obtained by using the double Jacobi

iterationtechnique. With z0 given,and A being the matrix of the Jax:obiiterationmethod, the

doubleJacobiiterationtechniqueproduces the vectorszl,z2,...,in accordance with

y= Azj +b

j=O._,2,....

z#+1 = Ay + b

We then expect cycling with the double Jacobi iteration using s,_.k to produce results similar to

those produced by cycling _'ith the (single) Jacobi iteration using s2,_,2k. Obviously, the number

of single Jacobi iterations actually performed in both cases is almost the same, although the com-

putational cost and storage requirements for it axe much lower with the double Jacobi iteration

technique.

Fi_ares 6.2.4-6.2.6 show logl0[]r(z_)I! , 0 < i < n, lovl011r(._,,k)il, 1 < k < t_, for (i) n - 0 and
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K = 10 amd (ii)n = 25 and K = 10.versusthe costofcomputing the z_ or the a_,kinthe cycling

mode, exactlyas before.

Figures 6.2.4-6.2.6show the resultsobta.irtedby picking3"= 100 and # = 0, _"= 100 _d

= -100, and 3"= 125 and _ = -100, respectively,_ before,the conchtsionsbeing_Iso_s before.

Note thatthe costof a double J=obi iterationistwicethatof a single3acobiiteration,namely,

20 vectoroperations.Therefore,when comparing the costsin Figures 6.2.4-6.2.5with the corre-

sponding costsin Fio*'uresS.2.1-6.2.3,the former should be doubled.

Fina_y,we mention that forboth Example 6.1 and Example 6.2,MPE can be used insteadof

R.RE_ the resultsobtained being very similar.
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Appendix

1. A Collection of Useful Formulas and Results for Jacobi Polynomials

The J_obi polynomials P_a'_)(z) are defined by

.7=o - J

with ct > -1 and ,_ > -1. They are orthogonal with respect to the weight function w(z) =

(1- z)_(1+ z)_ on [-i,1],i.e.,

//(_-:)o(_+ =z );_pLa,13) (z )p_ _'_) (z'_dz

I

2 _+_+: rCk _ o -L 1W(k + _ + 1)
,.¢_, (A.2)

2k+0+3-_1 r(k_-l)r(k+a+_+l)'

where 6,,_a is the Kronecker deha. P_°'Z)(z) are normalized such that

Polynomials orthogonal on [a, b] with respect to the weight function w(z) = (b- z)"(z - a) _

are

v_(=)= e}o,_)(o_\._---_-a_ 1) . (A.4)

Polynomials orthogonal on [-1, !] with respect to the weight function w(z) = Izt=_ are given

hv

{ P(°'"-l/=)(2z2 - 1) if k = 2vp_(z) = ,.(0 .+1/:_ (A.5)
xr;,' _(2z =-I) ifk=2_+!.

The normalization condition given in (A.3) is the one that has been widely accepted in the

literature of orthogonal polynomials. Thus (A.1) - (A.3) can be found in many books. See e.g.,

f ' [Sz, pp. 59-60].[AbSteg, Chapter 22] or tSz]. For (.4..5) see

Theorem A.1. For z > '_ or z < -1, with z fized otherwise, the sequence {/P_"'Z)(x)l}_¢=o is

monotonically increasing.

Proof. We start with the case : > 1. First, all the terms in the summation on the right hand side

of (A.1) axe positive for z > !. Next, ;he jth term of P(_°'e)(z) in (A.I) is strictly less than the
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correspondingterm of Ma,_), ,r_÷ I ix).The result now follows. As for x < -1, we first recall that

Pk(_'xs)(-z)= (-1)kPJXs'a)(_:), (A.6)

and then apply the result for z > 1, which we have already proved, to the polynomials P(_'°)(-z). []

Theorem A.2. The polynomiaLspk(z) that are defined in (,4.$) are such that, for n real and Izl > 1,

or/or z pure imaginary and lxl _>a, the sequence {Ipk(z)l}___ o is monotonically increasing. For

z pure imaginary and lz I < i the sequences (tp2_,(z)l}_'=0 and (Ip:.+x(z)l}7=0 are monotonically

increasing.

Proof. We observe that, by proper manipulation of (A.1), pk(z) can be expressed in the unified

_Orln

where

:=0 2
(a.7)

k k+lv = L J and, = (A.S)

Note that both v and _z are monotonically nondecrea.sing in k, and that one of them is always

increasing. Letting now z be real and z > 1, we see that all the terms in the summation on the

right hand side of (A.7) are positive. Next, the jth term of pk(z) in (A.7) is strictly less than

the corresponding term of pk+l(z). The result now follows for z > 1. For z < -1, we note

that p_(-z) = (--1)kpk(z), and apply the result for z > 1, which we have already proved, to the

polynomials pk(-z). For the case in which z is pure imaginary, i.e., z = i_, _ real, the factor

(z _"- 1):z k-_: in the jth term of pk(z) becomes ik(_ 2 + 1)J_ k-2j. The proof for the case Izl > 1

can now be completed as before. The proof of the case [z I < 1 can be done by employing Theorem

A.1 in conjunction with (A.5). r'a

2. A Result on Monotonic Weight Functions

XTheorem A.3. Let {p,_( )},_=0 be the sequence of polynomials orthogonal on [a,b] for finite b with

respect to the nonnegative weight function w(z). Assume that w(x) is nondecreasing on In, b]. Then

the functions _lp_(z)l attain their mazimum on [a,b] for z = b. A corres_nding statement

holds for an_/ subinterval [z0, b] of In, b] where w( z ) is nondecreasing.
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This theorem is stated and proved in [Sz, p. 163, Theorem 7.2].

3. A Lower Bound for a Best Polynomial I¢_. Approzimation Problem

ZTheorem A.4. Let {P,( )},=0 be the sequence of orthogonal polynomials on a compact set fl of

the complez z-plane with respect to the real nonnegative weight function w(z) on I2, i.e.,

n w(z)p,=(z)p.(z)dfl = 6,,,,,,, (A.9)

where dr2 stands for the area element if f2 is a domain D, and for the line element if fl is the

boundary of a domain D or" an arbitrary rectifiable curve. Let d:'( z) be the solution of the constrained

min-maz problem

minma.xl_/w(z)¢(z)l, ¢(z) polynomial of degree < h,
_ "v----"zEfl

subject to M(¢>) = 1,

where 3I is a bounded linear functional on the space o/functions continous on f2. Then

(A.lO)

Proof. We start by observing that, for any function f(z) that is continuous on fl, we have

max ifCz)l > {c -I [ If(z)l=dn) 1/2. (A.12)
zED Jf_

Letting now f(z) = _¢(z) in (A.12), where ¢(z) is a polynomial of degree at most k satisfying

M(0) = 1 , and minimizing both sides of (A.12) with respect to o, we obtain

I >__ in w(z)l (z)l'drZ) (a.13)

Since ¢(z) is a polynomial of degree k, it can be written as

k

= o,p,('),
i=0

•so that the minimization problem on the righthand sideof (A.13) becomes

(A.14)
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k

minimize Z lail2
_s i=0

k

subject to _ aiM(pi) = 1. (A.15)
i--0

The solution of (A.15) can be achieved, e.g., by using the method of Lagrange multipliers, and is

given by ")_I(pj) j = 0, 1, ..., k. (A.16)

= E =o IM(vOI2'

Combining (A.16) with (h.13) - (h.15), (h.ll) follows. []

Obviously, in case _ - [a, hi, a finite real interval, we have dr! = dz and c = b - a.

Also. if 3f is a point evaluation functional, i.e., M(o) = 0(_) for some (, then M(pi) = P_(() in

(A.11).
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n=O n=50 n=lO0

"Cb. -o Cbr.,_ F.,k F.,k r.,k

0 1.00D+00 1.00D+00 1.00D+00

2 2.83D-01 7.93D-01 7.42D-01

4 1.24D-01 5.00D-01 3.80D-01

6 5.66D-02 2.77D-01 1.74D-01

8 2.57D-02 1.43D-01 7.79D-02

i0 1.16D-02 7.16D-02 3.47D-02

12 5.20D-03 3.50D-02 1.54D-02

14 2.32D-03 1.68D-02 6.85D-03

16 1.04D-03 8.00D-03 3.04D-03

18 4.62D-04 3.77D-03 1.35D-03

20 2.06D-04 1.77D-03 6.01D-04

1.29D-02 1.30D-01 1.30D-01

6.46D-04 6.88D-03 9.64D-02

7.71D-05 8.66D-04 4.94D-02

1.30D-05 1.52D-04 2.26D-02

2.66D-06 3.25D-05 1.01D-02

6.22D-07 7.85I)-06 4.50D-03

1.60D-07 2.08D-06 2.00D-03

4.39D-08 5.88D-07 8.90D-04

1.28D-08 1.75D-07 3.95D-04

3.89D-09 5.47D-08 1.76D-04

1.23D-09 1.77D-08 7.81D-05

1.19D-03 1.69D-02 1.69D-02

2.15D-05 3.13D-04 1.25D-02

1.24D-06 1.86D-05 6.41D-03

1.16D-07 1.78D-06 2.94D-03

1.42D-08 2.25D-07 1.31D-03

2.12D-09 3.42D-08 5.85D-04

3.61D-I0 5.97D-09 2.60D-04

6.85D-II 1.16D-09 1.16D-04

1.42D-11 2.43D-I0 5.14D-05

3.13D-12 5.48D-I I 2.28D-05

7.35D-13 1.31D-11 1.01D-05

Table 5.1. Bounds for l'_D,k when D = [0,3] with _ = 0.96.

:F'.k : the lower bound defined in (4.15),

['_,k : the upper bound defined in (4.!8),

FC_ : the Chebyshev bound defined in (5.1).

.'_'otetha.tF D = F cb for tb/s case.0,,_ 0,}
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n -" 0 n - ,50 n -- 100

r., r. k r.,k r.,k

0 1.00D+00 1.00D+00 1.00D+00

2 3.20D-02 7.27D-02 5.55D-02

4 9.12D-04 2.78D-03 1.54D-03

6 2.56D-05 9.36D-05 4.29D-05

8 7.14D-07 2.99D-06 1.19D-06

10 1.99D-08 9.25D-08 3.31D-08

12 5.54D-I0 2.81D-09 9.19D-I0

14 1.54D-11 8,41D-11 2.55D-11

16 4.28D-13 2.50D-12 7.09D-13

18 1.19D-14 7.35D-14 1.97D-14

20 3.31D-16 2.15D-15 5.47D-16

1.29D-02 1.30D-01 1.30D-01

5.79D-07 5.g3D-06 7.21D-03

1,44D-10 1.50D-09 2.00D-04

8.28D-14 8.8113-13 5.57D-06

8.27D-17 8.9513-16 1.55D-07

1.23D-19 1.36D-18 4.30D-09

2.52D-22 2.8213-21 I.IgD-10

6.62D-25 7.53D-24 3.31D-12

2.14D-27 2.48D-26 9.21D-14

8,28D-30 9.72D-29 2.56D-15

3.73D-32 4.44D-31 7.11D-17

1.19D-03 1.69D-02 1.69D-02

1.38D-08 1.97D-0T 9.37D-04

9.21D-13 1.33D-11 2.60D-05

1.48D-16 2.16D-15 7.23D-07

4.26D-20 6.28D-19 2.01D-08

1.90D-23 2.83D-22 5.58D-I0

1.20D-26 1.80D-25 1.55D-11

1.00D-29 1.52D-28 4.31D-13

1.07D-32 1.63D-31 1.20D-14

1.40D-35 2.15D-34 3.32D-16

2.19D-38 3.40D-37 9.23D-18

Table 5.2. Bounds for F,_Dk when D = [-_, 0] with fl = 0.96.

F',k : the lower bound defined in (4.22),

F_,k : the upper bound defined in (4.22),

FC.\ : the Chebyshev bound defined in (5.1).

Note that F D r c_ for this case.O,k "- 0,1¢
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k n=O n=50 n=100

I'.._ F., k F.,k , F.,k

0 1.00D+00 1.00D+00 1.00D_00

2 4.42D-01 8.55D-01 8.55D-01

4 2.41D-01 6.44D.-01 5.75D-01

6 1.38D-01 4.44D-01 3.45D-01

8 7.92D-02 2.90D-01 1.98D-01

10 4.54D-02 1.83D-01 1.12D-01

12 2.58D-02 1.13D-01 6.33D-02

14 1.47D-02 6.89D-02 3.56D-02

16 8.30D-03 4.15D.-02 2.00D-02

18 4.69D-03 2.48D-02 1.13D-02

20 2.65D-03 1.47D-02 6.34D-03

1.82D-02 1.30D-01 1.30D-01

3.24D-03 2.39D-02 I.IID-01

8.31D-04 6.38D-03 7.47D-02

2.55D-04 2.03D-03 4.48D-02

8.TSD-05 7.18D-04 2.57D-02

3.26D-05 2.74D-04 1.46D-02

1.28D-05 1.11D-04 8.22D-03

5.26D-06 4.65I)-05 4.63D-03

2.23D-06 2.02D-05 2.60D-03

9.77D-07 9.02D--06 1.46D-03

4.37D-07 4.12D-06 8.24D-04

1.68D-03 1.6913-02 1.69D-02

1.71D-04 1.74D-03 1.44D-02

2.83D-05 2.94D-04 9.70D-03

6.02D-06 6.37D.-05 5.82D-03

1.49D-06 1.61D.-05 3.34D-03

4.14D-07 4.54I)-06 1.89D-03

1.25D-07 1.39D'-06 1.07D-03

4.01D-08 4.54D-07 6.01D-04

1.36D-08 1.56D--07 3.38D-04

4.81D-09 5.61D-.08 1.90D-04

1.76D-09 2.09D-08 1.07D-04

Table 5.3. Bounds for I"D when D = [-_3, 2] with/3 - 0.96.r*,k

I",,_ : the lower bound defined in (4.37),

f',,_ : the upper bound defined in (4.37),

FC.\ : the Chebyshev bound defined in (5.1).

Note that r D r ch for this case.
0,k : 0,k

4O



n = 0 n = 50 n = 100

t'._ f'.,k f,c_ -, -,,,.k r,,.k r,, k r_._ r,,.s, _,.l, r,,c_.k

0 1.00D+00 1.00D+00 1.00D+00

2 1.79D-01 3.15D-01 3.1513-01

4 3.02D-02 6.86D-02 5.24D-02

6 4.98D-03 1.34D-02 8.48D-03

8 8.13D-04 2.47D-03 1,37D-03

10 1.32D-04 4.45D-04 2.22D-04

12 2.15D-05 7.85D-05 3.60D-05

14 3.49D-06 1.37D-05 5.82D-06

16 5.66D-07 2.36D..06 9.42D-07

18 9.17D-08 4.05D-07 1.52D-07

20 1.49D-08 6.90D-08 2.47D-08

1.82D-02 1.3013-01 1.30D-01

1.66D-04 1.21D.-03 4.10D-02

2.92D-06 2.16])-05 6.80D-03

7.41D-08 5.59]3-07 1.1013-03

2.42D-09 1.86D-08 1.78D-04

9.50D-11 7.42D-10 2.89D-05

4.33D-12 3.44D.-11 4.67D-06

2.22D-13 1.79D-12 7.56D-07

1.26D-14 1.03D-13 1.22D-07

7.80D-16 6.49D-15 1.98D-08

5.19D-17 4.38D-16 3.20D-09

1.68D-03 1.69D.-02 1.69D-02

7.85D-06 7.97D-05 5.32D-03

7.20D-08 7.38D-07 8.83D-04
't

9.72D-10 1.01D-08 1.43D-04

1.71D-If 1.79D-I0 2.32D-05

3.71D-13 3.91D-12 3.75D-06

9.45D-15 1.00D-13 6.07D-07

2.76D-16 2.961)-15 9.82D-08

9.02D-18 9.77D-17 1.59D-08

3.26D-19 3.56D-18 2.57D-09

1.29D-20 1.42D-19 4.16D-I0

Table 5.4. Bounds forF D when D = {A=i_:_<(<_} with,3=0.96.

f'_,k: the lower bound defined in (4.37) with 2//32 - i replaced by -2/;32 - i,

/_,_,k: the upper bound defined in (4.42),

I'C,\: the Chebyshev bound defined in (5.2).
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k

0

1

2

3

4

5

6

7

S

9

10

11

12

13

14

15

16

17

18

19

2O

WtO .It _'80 ._.

9.70D-03 3,82D-02

$,311_04 4.,92D_33

9.62D-05 1.01 D-03

2.35D-05 2.61D-04

6.79D-0_ ?.S2D-O5

2.19D-06 2.59D-05

7.70D..07 9.29D-06

2J_D-07 3.54D-_

1.13D-07 1.42D--06

4.66D-08 S.gOE_07

1.99D-08 2.55D-07

8.72D-.09 1.13D-07

3.93D-O9 5.17D-08

1.1_2D--09 2.41D-.08

8.56D-I0 1.1SD-O8

4.11D-I0 5.S8D-O@

2.01D-10 2.75D-09

9.96D-11 1.38D-09

5.01D-11 6.98D-10

2.72D-11 3.59D-I0

2.34D-11 I_D-10

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

_['rlO./t _10.k

3.32D-04 3.82D-02

1.22D-06 1.16D-O4

8.11D-09 6.,q3D..07

7.72D.11 6.15D-09

9.49_.13 7.19D-11

1.43D.14 1.04D,12

2.52D-18 1.78D-14

S.11D-1S 3.50D-16

1.1615-19 7.80D.-18

2.,94D-21 1.93D-19

8.13D-23 5.26D-21

2.44D-24 1.55D-22

7.89D-26 4.96D-24

2.T3D-27 Z.69D-2S

1.0oD-2S 6._6D-27

3.90D-30 2.3TD-2S

1.60D..31 9.C>4D.OO

6.88D-33 4.11D-31

3.10D-34 1.84D-32

1.53D-35 8.59D-.34

2.46D-36 4.17D-35

k

0

1

2

3

4

5

6

7

S

9

10

11

12

13

14

15

16

17

'_8

19

20

V0/'|0. JI _lO,k

5.15I_.03 3,82D-02

4.94D-03 3.6eD-02

3.15D_04 4.79D-0,3

2.72D-04 4.55D-03

5.82D..05 9.46D-04

4.75]:)-05 8.91D-O4

1.41D-05 2.34D-04

1.11D.05 2.19D-04

3.94D-06 6,_D-OS

3.04D.O8 8.20D..05

1.22D-06 2.10D-05

g.28D-07 1.94D-05

4.07D-07 7.09D-06

3.07D-07 6.52D-06

1.44D-07 2.54D-06

1.08D-07 2.32D-06

5.31D-G8 9.51D.-07

3.95D-08 8.66D-07

2.04D--08 3.70D-07

1.51D-08 3.35D-07

8.06D-09 i .49D-07

k

0

1

2

3

4

$

6

7

S

9

10

11

12

13

14

15

16

17

18

19

2O

Wl_o,k _8o,J,

3.23D..04 3.S2D-02

2.22D.,04 3.66D..02

2.300.,.06 3.25D-04

1.,58D-045 2.13D-04

2.g3D-0,S 3.58D-06

1 ,ggD. 08 2.42 D.,06

5.26D-10 4.33D-O8

3.$6[_-10 4.01D_G8

1.21[_11 g.46]_10

8.13D-12 8.67D-10

3.35D-13 2.53D-11

2.24D-13 2.29D-11

1.0_D-14 7.90D-13

7.19D-1S 7.08D-13

3.9,6D-16 2,S2D-14

2.62D-16 2.50D-14

1.61D-17 1.12D-15

1.06D-17 9.B,6D-16

8.14D-19 4.92D-17

5.51D-19 4.28D-17

2.33D-19 2.35D-18

Table 6.1 .I Table 6.1.2 Table 6.1.3 Table 6.1.4

Tables 6.1.1-6.1.4: Wso,k - llr(  o, )ll/llr( o)l[,where _,,/¢ iscomputed by applying RRE in

conjunctionwith the iterativemethod _-j+1= Axj % b, j >_ 0, ,4 being given as in (6.1)with

jV = 1000. We take b = 0 so that the solutionto z = Az+bis zero. The vectorz0 ispicked

_s (1,1/v_,I/v_,...,I/v'_)T. The ._,._and the correspondingupper bounds f,._for r,Dk are

obtained by picking

(i)p = I"= <7/2,<7= 0.48 so that L)= L0,0.96jforTable 6.1.1,

(ii)p = _"= -c/2, _ = -0.48 so that D = [-0.96,0]forT_ble 6.1.2,

(iii) o = 0, p = 7"= 0.48 so that D = [-0.96,0.96] forTable 6.1.3,

(iv) o = 0, p = -I" = 0.48 so that D = {A = i_ : -0.96 _< _ _< 0.96} for Table 6.1.4.
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k

0

I

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

2O

1.65D-02 2.75D-01

1.59D-02 2.71D-.01

2.31D-03 7.46D-02

2.15D-03 T.28D-02

1.13D-03 2.70D-02

9.34D-04 2.62D-02

T.87D-04 1.13D-02

7.25D-04 1.09D-02

5.36D-04 5.16D-03

4.64D-04 4.95D-03

3.95D-04 2.51D-03

3.60D-04 2.40D-03

2.98D-04 1.28D-03

2.68D-04 1.22D-03

2.29D-04 6.73D-04

2.08D-04 6.39D-04

1.80D-04 3.65D-04

1.64D-04 3.46D-04

1.42D-04 2.03D-04

1.29D-04 1.92D-04

1.14D-04 1.15D-04

Table 6.1.5: Wso._ = IIr(sso,_)II/IIr(zo)II, where s,,k is computed by applying RI%E in conjunction

with the iterative method zj+1 = Azj + 6, ] > 0, A being given as in (6.1) with N = 1000 and

cT = 0, p = 0.6, and T- = 0.384. We takeb = 0 so that the solution to z = Az+bis zero. The

vector Zo is picked as (i, I/v_, I/v_, ..., I/v'_N) r. F:_'k is obtained by letting D = 0.984 in (4.38),

i.e., it is the corresponding l',,k appropriate for a mixed spectrum in [-0.984, 0.984], a/though the

spectrum of A is actually in [-0.96, 0.96].
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Figure Captions:

Figures 6.1.1-6.1.4: loglo(]]r(z_)ll/llr(xi.i,)ll), 0 < i < n, and loglo(l[r(s,,k)l[/[Ir(zi,,,)N), 1 <

k _ K, for (i) n = 0 and K = 10 _nd (li) n = 50 a.ud K -" 10(with the exception of Figure 6.1.2,

for which n = 20 instead of n = 50), versus the cost of computing the z; or the s,_.k in the cycling

mode. RI_E is being applied in conjunction with(1.2), where A is a_ given in (6.1)with N = 1000,

and b = 0 so that the solution is zero. Here z_,,, is the initial vector given a__ z,oi, = (1,1/v_,l/

v_, ..., 1/_)r.

(i) p = r = a/2, a = 0.48 for Figure 6.1.!,

(]i) p = :- = -a/2, a = -048 fo: Figure 6. t.2,

(Lii) a = 0, p = r = .0.48 for Figure 6.1.3,

(iv) a = 0, p = -:- = 0.48 for Figure 6.2..4.

IIFigure 6.1.5: log_o(llr(z,)li/l]r(=,.,,)ll), 0 _<i _<n, and loglo(llr(_,k)ll/llr(=,.,,)ll), 1 _< k _< K,

for (i) n = 0 and K = 10 and (ii) n = 50 and /( = 10, versus the cost of computing the zi or the

_.k in the cycling mode. B.RE is being applSed ]n conjunction with (1.2), where A is given in (6.1)

v.,i_h a = 0, p = 0.6, and :- = 0.384, and :\_ = 1000, _nd b = 0 so that the solution is zero. Here

z,,,, is the initial vector given as Z,o,,(1, 1/V'_, 1/v/'3, ..., 1/v_N) .

Figures 6.2.1-6.2.3: !Og,ollr(x,)'Ll, 0 < i < n, and log,ollr(s.,k)]], i _ k <__/4, for (i) n = 0 a_d

K = "2.0 and (;,i) n = 50 and K = 20, versus the cost of computing the zi or the s,_,_ in the cycling

mode. RRE is applied in conjunction with the Jacobi iteration to the Linear system arising from

the d_scretization of the convection-diffusion equation in Example 6.2. Here the solution is zero

and zi_,, = (!, l/v/2, 1/v/'3, ..., 1/v_) T is the initial vector.

(i) 7 = !00, 3 = 0 for Figure 6.2.!,

(5) _ = 100, 3 = -100 for Figure 6.2.2,

(iii) 7 = !25, 3 = -100 for Figure 6.'2..3.
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Figures 6.2.4-6.2.6: ]ogl01[r(z;)lJ, 0 _< i _< n, and lOgloJ[r(_,_.k)]], 1 _< k < K, for (i) n = 0 and

K = 10 _ud (ii) n = 25 _d K = 10, versus the cost of computing the z_ or the _.k in the cycling

mode. RRE is appfied in conjunction with the double Jacobi iteration to the line_ system _ising

from the d.iscretization of the convection-diffusion equstion in Example 6.2. Here the solution is

zeroaad zi._,- (i,i/v/2,i/vr3,...,1/VrN)7 isthe initialvector.

(i)-/= I00, _ = 0 forFigure6.2.4,

(ii)7 = I00, /3= -i00 forFigure 6.2.5,

(iii)-)'= 125, _ = -I00 forFigure 6.2.6.
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